Scientists have used a Nobel-prize winning Chemistry technique on a mixture of metals to potentially reduce the cost of fuel cells used in electric cars and reduce harmful emissions from conventional vehicles.

The researchers have translated a biological technique, which won the 2017 Nobel Chemistry Prize, to reveal atomic scale chemistry in metal nanoparticles. These materials are one of the most effective catalysts for energy converting systems such as fuel cells. It is the first time this technique has been used for this kind of research.

The particles have a complex star-shaped geometry and this new work shows that the edges and corners can have different chemistries which can now be tuned to reduce the cost of batteries and catalytic convertors.

The 2017 Nobel Prize in Chemistry was awarded to Joachim Frank, Richard Henderson and Jacques Dubochet for their role in pioneering the technique of ‘single particle reconstruction’. This electron microscopy technique has revealed the structures of a huge number of viruses and proteins but is not usually used for metals.

Now, a team at the University of Manchester, in collaboration with researchers at the University of Oxford and Macquarie University, have built upon the Nobel Prize winning technique to produce three dimensional elemental maps of metallic nanoparticles consisting of just a few thousand atoms.

Read more at The University of Manchester