Thermoelectric materials, capable of transforming heat into electricity, are very promising when converting residual heat into electrical energy, since they allow us to utilize hardly usable or almost lost thermal energy in an efficient way.

Researchers at the Institute of Materials Science of Barcelona (ICMAB-CSIC) have created a new concept of thermoelectric material, published in the journal Energy & Environmental Science. It is a device composed of cellulose, produced in situ in the laboratory by bacteria, with small amounts of a conductive nanomaterial, carbon nanotubes, using a sustainable and environmentally friendly strategy.

“Instead of making a material for energy, we cultivate it” explains Mariano Campoy-Quiles, a researcher of this study. “Bacteria, dispersed in an aqueous culture medium containing sugar and carbon nanotubes, produce the nanocellulose fibers that end up forming the device, in which the carbon nanotubes are embedded” continues Campoy-Quiles.

“We obtain a mechanically resistant, flexible and deformable material, thanks to the cellulose fibers, and with a high electrical conductivity, thanks to the carbon nanotubes,” explains Anna Laromaine, researcher of this study. “The intention is to approach the concept of circular economy, using sustainable materials that are not toxic for the environment, which are used in small amounts, and which can be recycled and reused,” explains Anna Roig, researcher of this study, “The device is made with sustainable and recyclable materials, and with a high added value,” she adds.

Read more at EurekAlert